HOME INTRODUCCION INFORME VARIABLES CONCLUSION ANEXOS
HIDRAULICA PETROLEO SOLAR EOLICA GAS NUCLEAR

 

Energía Hidráulica

 

Características Tecnológicas

 

La tecnología de las principales instalaciones se ha mantenido igual durante el siglo XX. Las centrales dependen de un gran embalse de agua contenido por una presa. El caudal de agua se controla y se puede mantener casi constante. El agua se transporta por unos conductos o tuberías forzadas, controlados con válvulas y turbinas para adecuar el flujo de agua con respecto a la demanda de electricidad. El agua que entra en la turbina sale por los canales de descarga. Los generadores están situados justo encima de las turbinas y conectados con árboles verticales. El diseño de las turbinas depende del caudal de agua; las turbinas Francis-Kaplan se utilizan para caudales grandes y saltos medios y bajos, y las turbinas Pelton para grandes saltos y pequeños caudales.

Las turbinas hidráulicas se emplean para aprovechar la energia del agua en movimiento. La turbina Kaplan es semejante a una hélice de un barco. las amplias palas o álabes de la turbina son impulsadas por agua de alta presion liberada por una compuerta. La turbina Pelton es un modelo del siglo XIX cuyo funcionamiento es más parecido al de un molino de agua tradicional. La rueda gira cuando el agua procedente del conducto forzado golpea sus paleta o álabes. El agua sale a gran presion por la tobera e impulsa los álabes que hacen girar un eje.

 

Además de las centrales situadas en presas de contención, que dependen del embalse de grandes cantidades de agua, existen algunas centrales que se basan en la caída natural del agua, cuando el caudal es uniforme. Estas instalaciones se llaman de agua fluente. Una de ellas es la de las Cataratas del Niágara, situada en la frontera entre Estados Unidos y Canadá.

 

Diseño de la presa

Una presa debe ser impermeable las filtraciones a través o por debajo de ella deben ser controladas al máximo para evitar la salida del agua y el deterioro de la propia estructura. Debe estar construida de forma que resista las fuerzas que se ejercen sobre ella. Estas fuerzas que los ingenieros deben tener en cuenta son: la gravedad (que empuja a la presa hacia abajo) la presión hidrostática (la fuerza que ejerce el agua contenida), la presión hidrostática en la base (que produce una fuerza vertical hacia arriba que reduce el peso de la presa), la fuerza que ejercería el agua si se helase, y las tensiones de la tierra, incluyendo los efectos de los sismos.

Cuando se valora el mejor emplazamiento para construir una presa, el riesgo de terremotos forma parte del análisis geológico. Además, los geólogos deben determinar qué tipo de terreno está expuesto a filtraciones y cuál puede soportar el peso de la presa y el agua que contendrá detrás de ella.

Análisis geológicos inadecuados han tenido consecuencias catastróficas. Un ejemplo es el desastre ocurrido con la presa Vaiont, en los Alpes italianos. El 9 de octubre de 1963 perdieron la vida 4.000 personas cuando un desprendimiento de rocas detrás de la presa produjo una enorme ola que rebasó los 265 m de la estructura de hormigón. La fuerza de esta ola, al caer desde una altura tan grande, devastó varios kilómetros de valle río abajo. Varios factores geológicos fueron responsables del desprendimiento, sobre todo el debilitamiento de las paredes de roca, inestable en el agua embalsada.

Altura de la presa

La altura de la presa está limitada por la topografía de su emplazamiento, aunque otros factores pueden determinar una altura máxima menor. Si la función principal de la presa es la obtención de energía la altura es un factor crítico, ya que la energía potencial del agua embalsada es mayor cuanto mayor es la altura a la que se encuentra. Si la presa es de contención el factor más importante es la capacidad de almacenamiento. El volumen de agua embalsada es mayor cuanto más alta es la presa. Otros factores son la utilidad y el valor de las tierras que quedarán sumergidas, y si las aguas afectarán a importantes vías de comunicación.

Aliviaderos

Después de determinar el nivel del embalse en condiciones normales, hay que establecer los procedimientos que aseguren que este nivel no se supere. Los aliviaderos son necesarios para descargar el excedente de agua para que éste no dañe la presa, la central eléctrica ni la ribera del río delante de la presa. El tipo de aliviadero más común es el derrame. Este sistema consiste en que una zona de la parte superior es más baja. Para permitir el aprovechamiento máximo de la capacidad de almacenamiento estas partes más bajas están cerradas con unas compuertas móviles. En algunas presas, los excedentes de agua son tan grandes que hay aliviaderos en todo el ancho de la presa, de forma que la estructura es una sucesión de pilares que sujetan compuertas levadizas. Otro tipo de aliviadero es el salto de agua, un canal de hormigón ancho, con mucha pendiente, que se construye en la base de algunas presas de altura moderada.

Las grandes presas de bóveda construidas en cañones rocosos río abajo paredes demasiado inclinadas para utilizar aliviaderos de derrame. Un ejemplo de esto es la presa Hoover, en el río Colorado (EEUU), en la que se utilizan vertederos de pozo, que consisten en un conducto vertical que conduce agua del embalse, cuando el nivel es alto, hasta un conducto horizontal que atraviesa la presa y la lleva río abajo.

Desaguaderos

Además de los aliviaderos, que aseguran que el embalse no rebase la presa, los desaguaderos son necesarios para extraer de modo constante agua del embalse. El agua extraída puede descargarse río abajo, puede llevarse a los generadores para obtener energía hidroeléctrica o puede utilizarse para riego. Los desaguaderos son conductos o túneles cuyas entradas se encuentran a la altura del nivel mínimo del embalse. Estas tomas poseen unas compuertas o válvulas que regulan la entrada de agua.

Protección contra la erosión

Hay que evitar que el agua que se envía río abajo erosione la base de la presa. Para reducir la velocidad del agua se construyen unos embalses llamados cuencas amortiguadoras, que forman parte de las estructura de la presa. Existen dos tipos de estructura que se utilizan para disipar la energía destructiva que lleva el agua al caer. Uno en el que el flujo rápido y de poca profundidad que baja de la presa se convierte en un flujo profundo y lento al hacerlo pasar por una falda horizontal o poco inclinada de hormigón, construida río abajo desde la base de la presa. En el otro tipo la base de la presa tiene una forma que desvía el flujo, que baja a gran velocidad, hacia arriba y lo hace girar. Este giro disipa la energía destructiva del agua.

Tipos de presa

Las presas se clasifican según la forma de su estructura y los materiales empleados. Las grandes presas pueden ser de hormigón o de elementos sin trabar. Las presas de hormigón más comunes son de gravedad, de bóveda y de contrafuertes. Las presas de elementos sin trabar pueden ser de piedra o de tierra. También se construyen presas mixtas, por ejemplo de gravedad y de piedra, para conseguir mayor estabilidad. Además, una presa de tierra puede tener una estructura de gravedad de hormigón que soporte los aliviaderos. La elección del tipo de presa más adecuado para un emplazamiento concreto se determina mediante estudios de ingeniería y consideraciones económicas. El coste de cada tipo de presa depende de la disponibilidad en las cercanías de los materiales para su construcción y de las facilidades para su transporte. Muchas veces sólo las características del terreno determinan la elección del tipo de estructura.

Presas de gravedad

Las presas de gravedad son estructuras de hormigón de sección triangular; la base es ancha y se va estrechando hacia la parte superior; la cara que da al embalse es prácticamente vertical. Vistas desde arriba son rectas o de curva suave. La estabilidad de estas presas radica en su propio peso. Es el tipo de construcción más duradero y el que requiere menor mantenimiento. Su altura suele estar limitada por la resistencia del terreno. Debido a su peso las presas de gravedad de más de 20 m de altura se construyen sobre roca. La presa Grande Dixence, en Suiza, que se terminó de construir en 1962, tiene una altura de 284 m y es una de las más grandes del mundo. Tiene una estructura de hormigón de gravedad de 700 m de longitud, construida sobre roca.

 

Presas de bóveda

Este tipo de presa utiliza los fundamentos teóricos de la bóveda. La curvatura presenta una convexidad dirigida hacia el embalse, así la carga se distribuye por toda la presa hacia los extremos; las paredes de los estrechos valles y cañones donde se suele construir este tipo de presa. En condiciones favorables, esta estructura necesita menos hormigón que la de gravedad, pero es difícil encontrar emplazamientos donde se puedan construir.

 

 

 

 

Presas de contrafuertes

Las presas de contrafuertes tienen una pared que soporta el agua y una serie de contrafuertes o pilares, de forma triangular, que sujetan la pared y transmiten la carga del agua a la base. Estas presas precisan de un 35 a un 50% del hormigón que necesitaría una de gravedad de tamaño similar. Hay varios tipos de presa de contrafuertes: los más comunes son de planchas uniformes y de bóvedas múltiples. En las de planchas uniformes el elemento que contiene el agua es un conjunto de planchas que cubren la superficie entre los contrafuertes. En las de bóvedas múltiples, éstas permiten que los contrafuertes estén más espaciados.

A pesar del ahorro de hormigón las presas de contrafuertes no son siempre más económicas que las de gravedad. El coste de las complicadas estructuras para forjar el hormigón y la instalación de refuerzos de acero suele equivaler al ahorro en materiales de construcción. Pero este tipo de presa es necesario en terrenos poco estables.

 

Presas de elementos sin trabar

Las presas de piedra o tierra y los diques son las estructuras más usadas para contener agua. En su construcción se utiliza desde arcilla hasta grandes piedras. Las presas de tierra y piedra utilizan materiales naturales con la mínima transformación, aunque la disponibilidad de materiales utilizables en los alrededores condiciona la elección de este tipo de presa. El desarrollo de las excavadoras y otras grandes máquinas ha hecho que este tipo de presas compita en costes con las de hormigón. La escasa estabilidad de estos materiales obliga a que la anchura de la base de este tipo de presas sea de cuatro a siete veces mayor que su altura. La cuantía de filtraciones es inversamente proporcional a la distancia que debe recorrer el agua; por lo tanto, la ancha base debe estar bien asentada sobre un terreno cimentado.

Las presas de elementos sin trabar pueden estar construidas con materiales impermeables en su totalidad, como arcilla, o estar formadas por un núcleo de material impermeable reforzado por los dos lados con materiales más permeables, como arena, grava o roca. El núcleo debe extenderse hasta bastante más abajo de la base para evitar filtraciones.

 

 

Construcción de presas

Un aspecto importante de la construcción de presas es la desecación y preparación de los cimientos. La desecación se consigue normalmente mediante una o varias ataguías, diseñadas para eliminar el agua del terreno donde se va a construir la presa. Las ataguías pueden ser presas de tierra o conjuntos de chapas de acero asentadas sobre pilotes y sujetas con tierra. También se deben construir ataguías a los lados del río para evitar el desbordamiento de su curso antes y después de la presa, y túneles rodeando la presa para conducir el agua. Estos túneles pueden aprovecharse cuando se haya terminado la presa. Si las condiciones topográficas impiden la construcción de túneles, la presa se debe realizar en dos etapas. Primero se instala una ataguía que deseca la mitad del ancho del río y se construye la base de esa mitad de la presa. Después se elimina esta ataguía y se construye una en la otra mitad. La construcción de grandes presas puede durar más de siete años; la posibilidad de que se produzcan inundaciones durante este periodo constituye un serio problema.

El plan hidroeléctrico de las Tres Gargantas, en construcción en la cuenca del río Yangzi Jiang (Yang-tsé), en China, incluye una presa de 2 km de longitud y 100 m de anchura. Esta es la construcción más grande realizada en China desde la Gran Muralla; se extenderá 600 km río arriba, y constituirá el embalse más largo del mundo. El plan de las Tres Gargantas proporcionará energía a Shanghai y a toda la cuenca del río Yangzi Jiang. También protegerá a los 10 millones de personas que viven río abajo de las inundaciones periódicas que asolan esta zona, donde se cultivan las dos terceras partes del arroz que se produce en China. Además hará navegable el río más arriba de las gargantas. El embalse inundará la garganta Xiling y desplazará a 1,2 millones de habitantes.

Problema de la sedimentación en los megaembalses

Los embalses tienen una vida útil limitada. Generalmente es más corta de lo esperado por la acumulación en el fondo de sedimentos orgánicos y minerales, que son acarreados por las aguas de los ríos. Al entrar estos en remanso decantan sus partículas en suspensión, formando capas de material que no siempre pueden ser eliminadas a un costo conveniente. En un estudio se estimo que alrededor de cincuenta kilómetros cúbicos de sedimentos (cerca del l% de la totalidad de la capacidad de almacenamiento) es atrapado cada año en los embalses. "En los grandes embalses de China, como en otras partes del planeta con un mayor grado de erosión, la tasa de sedimentación es de un 2.3% anual, lo que reduce la duración del embalse considerablemente en un 50% o más". (1.107)

Hay embalses como el Yangouxia en el Río Amarillo en China que perdió a fines de los años 50 alrededor de un tercio de su capacidad antes de ser inaugurado. Dieciséis años después perdió un 75% y recién en l967 lograron estabilizarlo con la construcción de embalses sedimentadores aguas arriba. Hay cientos de ejemplos de este problema como el del río Paute en Ecuador, cuya reducción en capacidad ocasionó, en gran parte, la crisis de energía eléctrica en ese país.

La experiencia mundial es que la sedimentación en grados diferentes ha causado en el mundo trastornos de proporciones en la participación de los ríos con relación a la manutención de la fertilidad de los suelos. Tal vez, el caso más impresionante es el del río Nilo en que 134 millones de toneladas de sedimentos al año son atrapados por el embalse Nasser (1-35). El limo que acarrea el Nilo mantenía la fertilidad del valle, como asimismo del delta del río Nilo, contribuyendo a su vez a la alimentación de los peces en el Mar Mediterráneo. Los agricultores egipcios se vieron obligados a aplicar enormes y crecientes cantidades de fertilizantes nitrogenados, disminuyendo significativamente el volumen de peces, tanto en el río, desembocadura y sector costero adyacente. Actualmente se estima que un 98% de este valioso sedimento queda atrapado en los embalses del Nilo.

 

Características Ecológicas

Los aspectos negativos de la energía hidráulica, con respecto a la ecología, son:

 

 

 

A pesar de estos aspectos la energía hidráulica es una buena opción ya que es una fuente de energía renovable y lo más importante es que no genera CO2.

 

Carbón y Petróleo

 

Características ecológicas

Contaminación atmosférica

La combustión de carbón, petróleo y gasolina es el origen de buena parte de los contaminantes atmosféricos. Más de un 80% del dióxido de azufre, un 50% de los óxidos de nitrógeno, y de un 30 a un 40% de las partículas en suspensión emitidos a la atmósfera en Estados Unidos proceden de las centrales eléctricas que queman combustibles fósiles, las calderas industriales y las calefacciones. Un 80% del monóxido de carbono y un 40% de los óxidos de nitrógeno e hidrocarburos emitidos proceden de la combustión de la gasolina y el gasóleo en los motores de los coches y camiones.

Entre los materiales que participan en un proceso químico o de combustión puede haber ya contaminantes (como el plomo de la gasolina), o éstos pueden aparecer como resultado del propio proceso. El monóxido de carbono, por ejemplo, es un producto típico de los motores de explosión.

Efectos a gran escala

Las altas chimeneas de las industrias no reducen la cantidad de contaminantes, simplemente los emiten a mayor altura, reduciendo así su concentración in situ. Estos contaminantes pueden ser transportados a gran distancia y producir sus efectos adversos en áreas muy alejadas del lugar donde tuvo lugar la emisión. El pH o acidez relativa de muchos lagos de agua dulce de la región se ha visto alterado hasta tal punto que han quedado destruidas poblaciones enteras de peces. En Europa se han observado efectos similares, y así, por ejemplo, Suecia ha visto afectada la capacidad de sustentar peces de muchos de sus lagos. Las emisiones de dióxido de azufre y la subsiguiente formación de ácido sulfúrico pueden ser también responsables del ataque sufrido por las calizas y el mármol a grandes distancias.

El creciente consumo de carbón y petróleo desde finales de la década de 1940 ha llevado a concentraciones cada vez mayores de dióxido de carbono. El efecto invernadero resultante, que permite la entrada de la energía solar pero reduce la reemisión de rayos infrarrojos al espacio exterior, genera una tendencia al calentamiento que podría afectar al clima global y llevar al deshielo parcial de los casquetes polares. Es concebible que un aumento de la cubierta nubosa o la absorción del dióxido de carbono por los océanos pudieran poner freno al efecto invernadero antes de que se llegara a la fase del deshielo polar. No obstante, los informes publicados en Estados Unidos en la década de 1980 indican que el efecto invernadero es un hecho y que las naciones del mundo deberían tomar medidas inmediatamente para ponerle solución.

 

 

Contaminación por crudo

Se trata de una de las formas más graves de contaminación del agua, y el término se emplea sobre todo en relación con el vertido de petróleo al medio ambiente marino. Los naufragios más famosos de grandes petroleros han sido los del Torrey Canyon, que vertió 860.000 barriles (107.000 toneladas) de petróleo frente a las costas de Cornwall, Inglaterra, en 1967, y el del Exxon Valdez, que vertió unos 240.000 barriles (30.000 toneladas) en el Prince William Sound, Alaska, en marzo de 1989. El mayor vertido totalizó unos 2.160.000 barriles, y se debió a la colisión de dos petroleros, el Aegean Captain y el Atlantic Empress, cerca de Trinidad y Tobago en 1979. No obstante, sólo un 10% del petróleo que va a parar al mar procede de accidentes marinos. Otras fuentes son la atmósfera, la filtración natural, la contaminación de los ríos y las escorrentías urbanas, las refinerías de petróleo situadas en la costa, las plataformas petrolíferas marinas (su peor vertido hasta la fecha, de unas 540.000 toneladas, se produjo en el campo de Nowruz, en el golfo Pérsico, en 1983), las descargas operativas de los petroleros (este tipo de vertidos, responsables de un 22% del total, constituye la mayor aportación individual a la contaminación por crudo), y otras causas (como el vertido en el golfo Pérsico durante la Guerra del Golfo en 1991, que se estima en unas 460.000 toneladas).

Las descargas operativas se deben al lavado de los depósitos en el mar y al vertido de lastre en forma de agua contaminada antes de la carga. Estas operaciones son las responsables de la contaminación crónica de las playas públicas con depósitos similares a la brea.

En el mar, la contaminación por crudo es sobre todo dañina para los animales de superficie, en especial para las aves marinas, pero también para los mamíferos y reptiles acuáticos. El petróleo daña el plumaje de las aves marinas, que también pueden ingerirlo al intentar limpiarse. En la costa hay ciertos hábitats especialmente vulnerables y sensibles a este tipo de contaminación. Estos incluyen los corales, las marismas y los manglares. La contaminación por crudo también puede ser muy dañina para piscifactorías costeras (en particular para las jaulas de salmones y las bandejas de ostras) y para los centros recreativos, como las playas y los centros de deporte acuáticos.

La contaminación por crudo debida a la prospección y la explotación petrolíferas en tierra firme también puede ser muy dañina para el medio ambiente. En la mayor parte de los casos la contaminación por crudo se debe a defectos de diseño, mantenimiento y gestión. Por ejemplo, en la Amazonia ecuatoriana se ha producido una contaminación generalizada de los suelos y los cauces de agua por culpa de los reventones, o eliminación descuidada del petróleo residual y las disfunciones de los separadores petróleo-agua. En la antigua Unión Soviética se ha producido contaminación a gran escala por la corrosión y el abandono a la que se ven sometidos los oleoductos. Se estima que en octubre de 1994, se vertieron entre 60.000 y 80.000 toneladas de petróleo por la rotura de un oleoducto cerca de Usinsk, al sur del Círculo Polar Ártico. En latitudes tan extremas los ecosistemas de la tundra y la taiga son altamente sensibles a la contaminación por crudo, y los procesos naturales de degradación, físicos y biológicos, son muy lentos. También se producen daños en los trópicos: en la región del delta del Níger, en Nigeria, los oleoductos, dispuestos en la superficie de tierras agrícolas, mal construidos y con pobre mantenimiento, sufren fugas regulares; los intentos de quemar los residuos a menudo dejan una corteza de tierra sin vida de hasta 2 m de profundidad, lo que hace que ésta quede inutilizable durante un tiempo imprevisible. Los efectos de este tipo de contaminación por crudo seguirán siendo patentes, por lo tanto, durante décadas.

Recogida de un vertido de petróleo

Los trabajadores emplean redes especiales para limpiar una playa tras un vertido de un petrolero. Los vertidos representan un grave problema, ya que una vez producidos, es casi imposible eliminarlos o contenerlos por completo. Dado que el agua y el petróleo no se mesclan, este flota sobre el agua y acaba contaminando las costas. el intento de tratar quimicamente o hundir el crudo puede alterar aun más los ecosistemas marinos y costeros.

 

Extraccion del petroleo de los yacimientos

La torre de perforacion rotatoria emplea una serie de tuberias giratorias, la llamada cadena de perforacion, para acceder a un yacimiento de petroleo. La cadena esta sostenida por una torre, y el banco giratorio de la base lo hace girar. Un fluido semejante al fango, impulsado por una bomba, retira los detritos de perforacion a medida que el taladro penetra en la roca. Los yacimientos de petróleo se forman como resultado de una presion intensa sobre capas de organismos acuaticos y terrestres muertos, mezclados con arena o limo. El yacimiento mostrado está atrapado entre una capa de roca no porosa y un domo salinifero. Como no tienen espacio para expandirse, el gas y el petroleo crudo estan bajo una gran presion, y tienden a brotar de forma violenta por el agujero perforado.

 

 

Energía solar

 

Características tecnológicas

 

Obtención directa de energía solar

La obtención directa de energía solar requiere dispositivos artificiales llamados colectores solares, diseñados para recoger energía, a veces después de concentrar los rayos del Sol. La energía, una vez recogida, se emplea en procesos térmicos o fotoeléctricos, o fotovoltaicos. En los procesos térmicos, la energía solar se utiliza para calentar un gas o un líquido que luego se almacena o se distribuye. En los procesos fotovoltaicos, la energía solar se convierte en energía eléctrica sin ningún dispositivo mecánico intermedio. Los colectores solares pueden ser de dos tipos principales: los de placa plana y los de concentración.

Colectores de placa plana

En los procesos térmicos los colectores de placa plana interceptan la radiación solar en una placa de absorción por la que pasa el llamado fluido portador. Éste, en estado líquido o gaseoso, se calienta al atravesar los canales por transferencia de calor desde la placa de absorción. La energía transferida por el fluido portador, dividida entre la energía solar que incide sobre el colector y expresada en porcentaje, se llama eficiencia instantánea del colector. Los colectores de placa plana tienen, en general, una o más placas cobertoras transparentes para intentar minimizar las pérdidas de calor de la placa de absorción en un esfuerzo para maximizar la eficiencia. Son capaces de calentar fluidos portadores hasta 82 °C y obtener entre el 40 y el 80% de eficiencia.

Los colectores de placa plana se han usado de forma eficaz para calentar agua y para calefacción. Los sistemas típicos para casa-habitación emplean colectores fijos, montados sobre el tejado. En el hemisferio norte se orientan hacia el Sur y en el hemisferio sur hacia el Norte. El ángulo de inclinación óptimo para montar los colectores depende de la latitud. En general, para sistemas que se usan durante todo el año, como los que producen agua caliente, los colectores se inclinan (respecto al plano horizontal) un ángulo igual a los 15° de latitud y se orientan unos 20º latitud S o 20º de latitud N.

Además de los colectores de placa plana, los sistemas típicos de agua caliente y calefacción están constituidos por bombas de circulación, sensores de temperatura, controladores automáticos para activar el bombeo y un dispositivo de almacenamiento. El fluido puede ser tanto el aire como un líquido (agua o agua mezclada con anticongelante), mientras que un lecho de roca o un tanque aislado sirven como medio de almacenamiento de energía.

Colectores de concentración

Para aplicaciones como el aire acondicionado y la generación central de energía y de calor para cubrir las grandes necesidades industriales, los colectores de placa plana no suministran, en términos generales, fluidos con temperaturas bastante elevadas como para ser eficaces. Se pueden usar en una primera fase, y después el fluido se trata con medios convencionales de calentamiento. Como alternativa, se pueden utilizar colectores de concentración más complejos y costosos. Son dispositivos que reflejan y concentran la energía solar incidente sobre un zona receptora pequeña. Como resultado de esta concentración, la intensidad de la energía solar se incrementa y las temperaturas del receptor (llamado "blanco") pueden acercarse a varios cientos, o incluso miles, de grados Celsius. Los concentradores deben moverse para seguir al Sol si se quiere que actúen con eficacia; los dispositivos utilizados para ello se llaman heliostatos.

Hornos solares

Los hornos solares son una aplicación importante de los concentradores de alta temperatura. El mayor, situado en Odeillo, en la parte francesa de los Pirineos, tiene 9.600 reflectores con una superficie total de unos 1.900 m2 para producir temperaturas de hasta 4.000 °C. Estos hornos son ideales para investigaciones que requieran temperaturas altas en entornos libres de contaminantes —por ejemplo, en la investigación de materiales—.

Receptores centrales

La generación centralizada de electricidad a partir de energía solar está en desarrollo. En el concepto de receptor central, o de torre de potencia, una matriz de reflectores montados sobre heliostatos controlados por computadora reflejan y concentran los rayos del Sol sobre una caldera de agua situada sobre la torre. El vapor generado puede usarse en los ciclos convencionales de las plantas de energía y generar electricidad.

Enfriamiento solar

Se puede producir frío con el uso de energía solar como fuente de calor en un ciclo de enfriamiento por absorción. Uno de los componentes de los sistemas estándar de enfriamiento por absorción, llamado generador, necesita una fuente de calor. Puesto que, en general, se requieren temperaturas superiores a 150 °C para que los dispositivos de absorción trabajen con eficacia, los colectores de concentración son más apropiados que los de placa plana.

Electricidad fotovoltaica

Las células solares hechas con obleas finas de silicio, arseniuro de galio u otro material semiconductor en estado cristalino, convierten la radiación en electricidad de forma directa. Ahora se dispone de células con eficiencias de conversión superiores al 30%. Por medio de la conexión de muchas de estas células en módulos, el coste de la electricidad fotovoltaica se ha reducido mucho. El uso actual de las células solares se limita a dispositivos de baja potencia, remotos y sin mantenimiento, como boyas y equipamiento de naves espaciales.

Dispositivos de almacenamiento de energía solar

Debido a la naturaleza intermitente de la radiación solar como fuente energética durante los periodos de baja demanda debe almacenarse el sobrante de energía solar para cubrir las necesidades cuando la disponibilidad sea insuficiente. Además de los sistemas sencillos de almacenamiento como el agua y la roca, se pueden usar, en particular en las aplicaciones de refrigeración, dispositivos más compactos que se basan en los cambios de fase característicos de las sales eutécticas (sales que se funden a bajas temperaturas). Los acumuladores pueden servir para almacenar el excedente de energía eléctrica producida por dispositivos eólicos o fotovoltaicos. Un concepto más global es la entrega del excedente de energía eléctrica a las redes existentes y el uso de éstas como fuentes suplementarias si la disponibilidad solar es insuficiente. Sin embargo, la economía y la fiabilidad de este proyecto plantea límites a esta alternativa.

Recolección pasiva de energía solar

Los sistemas de calefacción solar activa incluyen equipos especiales que utilizan la energía del sol para calentar o enfriar estructuras existentes. Los sistemas pasivos implican diseños de estructuras que utilizan la energía solar para enfriar y calentar. Por ejemplo, en esta casa, un espacio solar sirve de colector en invierno cuando las persianas están abiertas y de refrigerador o nevera en verano cuando están cerradas. Muros gruesos de hormigón permiten oscilaciones de temperatura ya que absorben calor en invierno y aíslan en verano. Los depósitos de agua proporcionan una masa térmica para almacenar calor durante el día y liberarlo durante la noche.

Características ecológicas

La generación de electricidad por medio de la energía solar no produce un impacto en el medio ambiente (a diferencia de otras fuentes como el carbón, petróleo, etc.), además de ser gratuita y renovable. Esto la convierte, junto con la energía eólica, en la preferida de las organizaciones ambientalistas.

A pesar del gran espacio que requieren las instalaciones de una central de grandes envergaduras, capaz de incidir con un aceptable porcentaje de suministro eléctrico a una ciudad promedio, los proyectos actuales se centran en construir las centrales solares en áreas desérticas (además ventajosamente propicias para la captación de la energía).

Energía eólica

 

Características tecnológicas

Los científicos calculan que hasta un 10% de la electricidad mundial se podría obtener de generadores de energía eólica a mediados del siglo XXI. Los generadores de turbina de viento tienen varios componentes. El rotor convierte la fuerza del viento en energía rotatoria del eje, una caja de engranajes aumenta la velocidad y un generador transforma la energía del eje en energía eléctrica. En algunas máquinas de eje horizontal la velocidad de las aspas puede ajustarse y regularse durante su funcionamiento normal, así como cerrarse en caso de viento excesivo. Otras emplean un freno aerodinámico que con vientos fuertes reduce automáticamente la energía producida. Las máquinas modernas comienzan a funcionar cuando el viento alcanza una velocidad de unos 19 km/h, logran su máximo rendimiento con vientos entre 40 y 48 km/h y dejan de funcionar cuando los vientos alcanzan los 100 km/h. Los lugares ideales para la instalación de los generadores de turbinas son aquellos en los que el promedio anual de la velocidad del viento es de cuando menos 21 km/h.

Los generadores de turbinas de viento para producción de energía a gran escala y de rendimiento satisfactorio tienen un tamaño mediano (de 15 a 30 metros de diámetro, con una potencia entre 100 y 400 kW). Algunas veces se instalan en filas y se conocen entonces como granjas de viento. En California se encuentran algunas de las mayores granjas de viento del mundo y sus turbinas pueden generar unos 1.120 MW de potencia (una central nuclear puede generar unos 1.100 MW).

El precio de la energía eléctrica producida por ese medio resulta competitivo con otras muchas formas de generación de energía. En la actualidad Dinamarca obtiene más del 2% de su electricidad de las turbinas de viento, también empleadas para aumentar el suministro de electricidad a comunidades insulares y en lugares remotos. En Gran Bretaña, uno de los países más ventosos del mundo, los proyectos de turbinas de viento, especialmente en Gales y en el noroeste de Inglaterra, generan una pequeña parte de la electricidad procedente de fuentes de energía renovable. En España se inauguró en el año 1986 un parque eólico de gran potencia en Tenerife, Canarias. Más tarde se hicieron otras instalaciones en La Muela (Zaragoza), el Ampurdán (Gerona), Estaca de Bares (La Coruña) y Tarifa (Cádiz), ésta dedicada fundamentalmente a la investigación. La energía eólica supone un 6% de la producción de energía primaria en los países de la Unión Europea.

Características ecológicas

El hecho de que la energía eólica utilice justamente los vientos como fuente de energía indica por si mismo que es un tipo de obtención de energía totalmente no contaminante, gratuita (una vez ya instaladas las granjas de viento), inagotable y, a pesar de requerir grandes cantidades de terreno, generalmente no crea inconvenientes en la población animal de las zonas aledañas.

 

Gas natural

Aspectos Tecnológicos

La turbina de combustión, también denominada turbina de gas, motor que utiliza el flujo de gas como medio de trabajo para convertir energía térmica en energía mecánica. El gas se produce en el motor como resultado de la combustión de determinadas materias. Unas toberas estacionarias lanzan chorros de dicho gas contra los álabes (paletas) de una turbina, y el impulso de los chorros hace girar el eje de la turbina. Una turbina de combustión de ciclo simple incluye un compresor que bombea aire comprimido a la cámara de combustión. El combustible, en forma gaseosa o nebulizada, también se inyecta en dicha cámara, donde se produce la combustión. Los productos de la combustión salen de la cámara a través de las toberas y hacen moverse la turbina, que impulsa el compresor y una carga externa como un generador eléctrico.

En una turbina o un compresor, una fila de álabes fijos y una fila correspondiente de álabes móviles unidos a un rotor se denomina una etapa. Las máquinas grandes emplean compresores y turbinas de flujo axial con varias etapas.

La eficiencia del ciclo de una turbina de combustión está limitada por la necesidad de un funcionamiento constante a temperaturas altas en la cámara de combustión y en las primeras etapas de la turbina. Una turbina de gas pequeña de ciclo simple puede tener una eficiencia termodinámica relativamente baja en comparación con un motor de gasolina corriente. Los avances en los materiales resistentes al calor, los recubrimientos protectores y los sistemas de enfriamiento han hecho posible grandes unidades con una eficiencia en ciclo simple del 34% o más.

En un motor de ciclo combinado, la cantidad considerable de calor que queda en los gases de escape de la turbina se dirige hacia una caldera denominada generador de vapor por recuperación de calor. El calor recuperado se usa para producir vapor, que alimenta una turbina de vapor asociada. El rendimiento combinado es un 50% mayor que el de la turbina de gas por sí sola. Hoy se instalan turbinas de ciclo combinado con una eficiencia térmica del 52% y más. En algunos países las turbinas de combustión pesadas, tanto de ciclo simple como combinado, ocupan un lugar importante en la generación de electricidad a gran escala. Es posible obtener una potencia por unidad superior a los 200 megavatios (MW), y la potencia de una turbina de ciclo combinado puede superar los 300 MW.

Las turbinas de combustión emplean como combustible gas natural o líquidos como queroseno o gasoil. También puede usarse carbón, una vez transformado en gas en un gasificador aparte.

 

Aspectos ecológicos

Debido a que la obtención de energía se realiza por medio de una combustión, este proceso es contaminante, aunque no llega a ser de las cantidades emitidas por las de generación a partir de carbón o petróleo. Además el gas natural, empleado en dichas centrales es un recurso no renovable. Una alternativa que está cobrando importancia (en especial en algunos países en desarrollo) es el biogas.1

 

 

Fisión Nuclear

Características tecnológicas

 

El átomo

El átomo está formado por un pequeño núcleo, cargado positivamente, rodeado de electrones. El núcleo, que contiene la mayor parte de la masa del átomo, está compuesto a su vez de neutrones y protones, unidos por fuerzas nucleares muy intensas, mucho mayores que las fuerzas eléctricas que ligan los electrones al núcleo.

La energía de enlace de un núcleo mide la intensidad con que las fuerzas nucleares mantienen ligados a los protones y neutrones. La energía de enlace por nucleón, es decir, la energía necesaria para separar del núcleo un neutrón o un protón, depende del número másico A. La curva de las energías de enlace implica que si dos núcleos ligeros, que ocupan posiciones muy bajas en la tabla, se fusionan para formar un núcleo de mayor peso (o si un núcleo pesado, que ocupa posiciones muy altas en la tabla, se divide en dos de menor peso), los núcleos resultantes están ligados con más fuerza, por lo que se libera energía.

Una reacción de fisión nuclear libera una energía 10 millones de veces mayor que una reacción química típica.

Energía nuclear de fisión

Las dos características fundamentales de la fisión nuclear en cuanto a la producción práctica de energía nuclear son: En primer lugar, la energía liberada por la fisión es muy grande. La fisión de 1 kg de uranio 235 libera 18,7 millones de kilovatios hora en forma de calor. En segundo lugar, el proceso de fisión iniciado por la absorción de un neutrón en el uranio 235 libera un promedio de 2,5 neutrones en los núcleos fisionados. Estos neutrones provocan rápidamente la fisión de varios átomos más, con lo que liberan otros cuatro o más neutrones adicionales e inician una serie de fisiones nucleares automantenidas, una reacción en cadena que lleva a la liberación continuada de energía nuclear.

El uranio presente en la naturaleza sólo contiene un 0,71% de uranio 235; el resto corresponde al isótopo no fisionable uranio 238. Una masa de uranio natural, por muy grande que sea, no puede mantener una reacción en cadena, porque sólo el uranio 235 es fácil de fisionar. Es muy improbable que un neutrón producido por fisión, con una energía inicial elevada de aproximadamente 1 MeV, inicie otra fisión, pero esta probabilidad puede aumentarse cientos de veces si se frena el neutrón a través de una serie de colisiones elásticas con núcleos ligeros como hidrógeno, deuterio o carbono. En ello se basa el diseño de los reactores de fisión empleados para producir energía.

En diciembre de 1942, en la Universidad de Chicago (EEUU), el físico italiano Enrico Fermi logró producir la primera reacción nuclear en cadena. Para ello empleó un conjunto de bloques de uranio natural distribuidos dentro de una gran masa de grafito puro (una forma de carbono). En la 'pila' o reactor nuclear de Fermi, el 'moderador' de grafito frenaba los neutrones y hacía posible una reacción en cadena.

Reactores de energía nuclear

Los primeros reactores nucleares a gran escala se construyeron en 1944 en Hanford, en el estado de Washington (EEUU), para la producción de material para armas nucleares. El combustible era uranio natural; el moderador, grafito. Estas plantas producían plutonio mediante la absorción de neutrones por parte del uranio 238; el calor generado no se aprovechaba.

Reactores nucleares activos en el mundo

Un total de 443 reactores nucleares funcionan actualmente en el mundo, según datos proporcionados por el Organismo Internacional de Energía Atómica (OIEA), con sede en Viena.

En el año 1996 cinco nuevos reactores, con una capacidad eléctrica total neta de 5.717 megavatios, fueron conectados a la red mundial: uno en Francia, dos en Japón y los dos restantes en Rumania y Estados Unidos.

El comienzo de las operaciones, en abril del 97, en un nuevo reactor, el Wolsong 2, en la República de Corea, con una capacidad de 650 megavatios, elevó a 443 el número total de reactores en funcionamiento en todo el planeta, según la OIEA. Además, en 1996 se iniciaron las obras de construcción de tres nuevos reactores nucleares: dos en Qinshan (China) y uno en Onagawa, Japón, con lo que actualmente hay en construcción 36 reactores en catorce países, entre ellos también Argentina, Brasil y Francia.

La contribución de la energía de origen nuclear a la producción eléctrica es especialmente elevada en Lituania, con un 83,4 por ciento; Francia, un 77,4 por ciento; Bélgica, 57,2 por ciento; Suecia, 52,4 por ciento y Eslovaquia, 44,5 por ciento.
Siguen Suiza, con un 44,5 por ciento; Ucrania; 43,8 por ciento; Bulgaria, 42,2 por ciento y Hungría, con un 40,8 por ciento. En la Argentina, las centrales nucleares en funcionamiento (Atucha I y Embalse) proporcionan aproximadamente el 15% de la energía eléctrica consumida.

Reactores de agua ligera y pesada

En todo el mundo se han construido diferentes tipos de reactores (caracterizados por el combustible, moderador y refrigerante empleados) para la producción de energía eléctrica. Por ejemplo, en Estados Unidos, con pocas excepciones, los reactores para la producción de energía emplean como combustible nuclear óxido de uranio isotópicamente enriquecido, con un 3% de uranio 235. Como moderador y refrigerante se emplea agua normal muy purificada. Un reactor de este tipo se denomina reactor de agua ligera (RAL).

En el reactor de agua a presión (RAP), una versión del sistema RAL, el refrigerante es agua a una presión de unas 150 atmósferas. El agua se bombea a través del núcleo del reactor, donde se calienta hasta unos 325 °C. El agua sobrecalentada se bombea a su vez hasta un generador de vapor, donde a través de intercambiadores de calor calienta un circuito secundario de agua, que se convierte en vapor. Este vapor propulsa uno o más generadores de turbinas que producen energía eléctrica, se condensa, y es bombeado de nuevo al generador de vapor. El circuito secundario está aislado del agua del núcleo del reactor, por lo que no es radiactivo. Para condensar el vapor se emplea un tercer circuito de agua, procedente de un lago, un río o una torre de refrigeración. La vasija presurizada de un reactor típico tiene unos 15 m de altura y 5 m de diámetro, con paredes de 25 cm de espesor. El núcleo alberga unas 80 toneladas de óxido de uranio, contenidas en tubos delgados resistentes a la corrosión y agrupados en haces de combustible.

En el reactor de agua en ebullición (RAE), otro tipo de RAL, el agua de refrigeración se mantiene a una presión algo menor, por lo que hierve dentro del núcleo. El vapor producido en la vasija presurizada del reactor se dirige directamente al generador de turbinas, se condensa y se bombea de vuelta al reactor. Aunque el vapor es radiactivo, no existe un intercambiador de calor entre el reactor y la turbina, con el fin de aumentar la eficiencia. Igual que en el RAP, el agua de refrigeración del condensador procede de una fuente independiente, como un lago o un río.

El nivel de potencia de un reactor en funcionamiento se mide constantemente con una serie de instrumentos térmicos, nucleares y de flujo. La producción de energía se controla insertando o retirando del núcleo un grupo de barras de control que absorben neutrones. La posición de estas barras determina el nivel de potencia en el que la reacción en cadena se limita a automantenerse.

Durante el funcionamiento, e incluso después de su desconexión, un reactor grande de 1.000 megavatios contiene una radiactividad de miles de millones de curios1. La radiación emitida por el reactor durante su funcionamiento y por los productos de la fisión después de la desconexión se absorbe mediante blindajes de hormigón de gran espesor situados alrededor del reactor y del sistema primario de refrigeración. Otros sistemas de seguridad son los sistemas de emergencia para refrigeración de éste, que impiden el sobrecalentamiento del núcleo en caso de que no funcionen los sistemas de refrigeración principales. En la mayoría de los países también existe un gran edificio de contención de acero y hormigón para impedir la salida al exterior de elementos radiactivos que pudieran escapar en caso de una fuga.

Aunque al principio de la década de 1980 había 100 centrales nucleares en funcionamiento o en construcción en Estados Unidos, tras el accidente de Three Mile Island (ver más adelante) la preocupación por la seguridad y los factores económicos se combinaron para bloquear el crecimiento de la energía nuclear. Desde 1978, no se han encargado nuevas centrales nucleares en Estados Unidos y no se ha permitido el funcionamiento de algunas centrales ya terminadas. En 1990, alrededor del 20% de la energía eléctrica generada en Estados Unidos procedía de centrales nucleares, mientras que este porcentaje es casi del 75% en Francia.

En el periodo inicial del desarrollo de la energía nuclear, en los primeros años de la década de 1950, sólo disponían de uranio enriquecido Estados Unidos y la Unión de Repúblicas Socialistas Soviéticas (URSS). Por ello, los programas de energía nuclear de Canadá, Francia y Gran Bretaña se centraron en reactores de uranio natural, donde no puede emplearse como moderador agua normal porque absorbe demasiados neutrones. Esta limitación llevó a los ingenieros canadienses a desarrollar un reactor enfriado y moderado por óxido de deuterio (D2O), también llamado agua pesada. El sistema de reactores canadienses de deuterio-uranio (CANDU), empleado en 20 reactores, ha funcionado satisfactoriamente, y se han construido centrales similares en la India, Argentina y otros países.

En Gran Bretaña y Francia, los primeros reactores de generación de energía a gran escala utilizaban como combustible barras de metal de uranio natural, moderadas por grafito y refrigeradas por dióxido de carbono gaseoso a presión. En Gran Bretaña, este diseño inicial fue sustituido por un sistema que emplea como combustible uranio enriquecido. Más tarde se introdujo un diseño mejorado de reactor, el llamado reactor avanzado refrigerado por gas (RAG). En la actualidad, la energía nuclear representa casi una cuarta parte de la generación de electricidad en el Reino Unido. En Francia, el tipo inicial de reactor se reemplazó por el RAP de diseño estadounidense cuando las plantas francesas de enriquecimiento isotópico empezaron a proporcionar uranio enriquecido. Rusia y los otros Estados de la antigua URSS tienen un amplio programa nuclear, con sistemas moderados por grafito y RAP. A principios de la década de 1990, estaban en construcción en todo el mundo más de 120 nuevas centrales nucleares.

En España, la tecnología adoptada en los reactores de las centrales nucleares es del tipo de agua ligera; sólo la central de Vandellós tiene reactor de grafito refrigerado con CO2.

 

 

 

Reactores de propulsión

Para la propulsión de grandes buques de superficie, como el portaaviones estadounidense Nimitz, se emplean reactores nucleares similares al RAP. La tecnología básica del sistema RAP fue desarrollada por primera vez en el programa estadounidense de reactores navales dirigido por el almirante Hyman George Rickover. Los reactores para propulsión de submarinos suelen ser más pequeños y emplean uranio muy enriquecido para que el núcleo pueda ser más compacto. Estados Unidos, Gran Bretaña, Rusia y Francia disponen de submarinos nucleares equipados con este tipo de reactores.

Estados Unidos, Alemania y Japón utilizaron durante periodos limitados tres cargueros oceánicos experimentales con propulsión nuclear. Aunque tuvieron éxito desde el punto de vista técnico, las condiciones económicas y las estrictas normas portuarias obligaron a suspender dichos proyectos. Los soviéticos construyeron el primer rompehielos nuclear, el Lenin, para emplearlo en la limpieza de los pasos navegables del Ártico.

Reactores de investigación

En muchos países se han construido diversos reactores nucleares de pequeño tamaño para su empleo en formación, investigación o producción de isótopos radiactivos. Estos reactores suelen funcionar con niveles de potencia del orden de 1 megavatio, y es más fácil conectarlos y desconectarlos que los reactores más grandes utilizados para la producción de energía.

Una variedad muy empleada es el llamado reactor de piscina. El núcleo está formado por material parcial o totalmente enriquecido en uranio 235, contenido en placas de aleación de aluminio y sumergido en una gran piscina de agua que sirve al mismo tiempo de refrigerante y de moderador. Pueden colocarse sustancias directamente en el núcleo del reactor o cerca de éste para ser irradiadas con neutrones. Con este reactor pueden producirse diversos isótopos radiactivos para su empleo en medicina, investigación e industria, también pueden extraerse neutrones del núcleo del reactor mediante tubos de haces, para utilizarlos en experimentos.

Reactores autorregenerativos

Existen yacimientos de uranio, la materia prima en la que se basa la energía nuclear, en diversas regiones del mundo. No se conoce con exactitud sus reservas totales, que podrían ser limitadas a no ser que se empleen fuentes de muy baja concentración, como granitos y esquistos. Un sistema ordinario de energía nuclear tiene un periodo de vida relativamente breve debido a su muy baja eficiencia en el uso del uranio: sólo aprovecha aproximadamente el 1% del contenido energético del uranio.

La característica fundamental de un 'reactor autorregenerativo' es que produce más combustible del que consume. Lo consigue fomentando la absorción de los neutrones sobrantes por un llamado material fértil. Existen varios sistemas de reactor autorregenerativo técnicamente factibles. El que más interés ha suscitado en todo el mundo emplea uranio 238 como material fértil. Cuando el uranio 238 absorbe neutrones en el reactor, se convierte en un nuevo material fisionable, el plutonio, a través de un proceso nuclear conocido como desintegración.

En la desintegración beta, un neutrón del núcleo se desintegra para dar lugar a un protón y una partícula beta.

Cuando el plutonio 239 absorbe un neutrón, puede producirse su fisión, y se libera un promedio de unos 2,8 neutrones. En un reactor en funcionamiento, uno de esos neutrones se necesita para producir la siguiente fisión y mantener en marcha la reacción en cadena. Una media o promedio de 0,5 neutrones se pierden por absorción en la estructura del reactor o el refrigerante. Los restantes 1,3 neutrones pueden ser absorbidos por el uranio 238 para producir más plutonio.

El sistema autorregenerativo a cuyo desarrollo se ha dedicado más esfuerzo es el llamado reactor autorregenerativo rápido de metal líquido (RARML). Para maximizar la producción de plutonio 239, la velocidad de los neutrones que causan la fisión debe mantenerse alta, con una energía igual o muy poco menor que la que tenían al ser liberados. El reactor no puede contener ningún material moderador, como el agua, que pueda frenar los neutrones. El líquido refrigerante preferido es un metal fundido como el sodio líquido. El sodio tiene muy buenas propiedades de transferencia de calor, funde a unos 100 °C y no hierve hasta unos 900 °C. Sus principales desventajas son su reactividad química con el aire y el agua y el elevado nivel de radiactividad que se induce en el sodio dentro del reactor.

En Estados Unidos, el desarrollo del sistema RARML comenzó antes de 1950, con la construcción del primer reactor autorregenerativo experimental, el llamado EBR-1. Un programa estadounidense más amplio en el río Clinch fue cancelado en 1983, y sólo se ha continuado el trabajo experimental. En Gran Bretaña, Francia, Rusia y otros Estados de la antigua URSS funcionan reactores autorregenerativos, y en Alemania y Japón prosiguen los trabajos experimentales.

En uno de los diseños para una central RARML de gran tamaño, el núcleo del reactor está formado por miles de tubos delgados de acero inoxidable que contienen un combustible compuesto por una mezcla de óxido de plutonio y uranio: un 15% o un 20% de plutonio 239 y el resto uranio. El núcleo está rodeado por una zona llamada capa fértil, que contiene barras similares llenas exclusivamente de óxido de uranio. Todo el conjunto de núcleo y capa fértil mide unos 3 m de alto por unos 5 m de diámetro, y está montado en una gran vasija que contiene sodio líquido que sale del reactor a unos 500 °C. Esta vasija también contiene las bombas y los intercambiadores de calor que ayudan a eliminar calor del núcleo. El vapor se genera en un circuito secundario de sodio, separado del circuito de refrigeración del reactor (radiactivo) por los intercambiadores de calor intermedios de la vasija del reactor. Todo el sistema del reactor nuclear está situado dentro de un gran edificio de contención de acero y hormigón.

La primera central a gran escala de este tipo empleada para la generación de electricidad, la llamada Super-Phénix, comenzó a funcionar en Francia en 1984. En las costas del mar Caspio se ha construido una central de escala media, la BN-600, para producción de energía y desalinización de agua. En Escocia existe un prototipo de gran tamaño con 250 megavatios.

El RARML produce aproximadamente un 20% más de combustible del que consume. En un reactor grande, a lo largo de 20 años se produce suficiente combustible para cargar otro reactor de energía similar. En el sistema RARML se aprovecha aproximadamente el 75% de la energía contenida en el uranio natural, frente al 1% obtenido en el RAL.

 

Aspectos Ecológicos

 

Combustibles y residuos nucleares

Los combustibles peligrosos empleados en los reactores nucleares presentan problemas para su manejo, sobre todo en el caso de los combustibles agotados, que deben ser almacenados o eliminados de alguna forma.

Cambio de combustible nuclear

El agujero situado en el extremo más alejado de la cavidad azul es el núcleo de un reactor atomico. El tubo largo del centro del nucleo es el conjunto de combustible, que consiste en un haz de tubos metalicos llenos de uranio.

 

 

El ciclo del combustible nuclear

Cualquier central de producción de energía eléctrica es sólo parte de un ciclo energético global. El ciclo del combustible de uranio empleado en los sistemas RAL es actualmente el más importante en la producción mundial de energía nuclear, y conlleva muchas etapas. El uranio, con un contenido de aproximadamente el 0,7% de uranio 235, se obtiene en minas subterráneas o a cielo abierto. El mineral se concentra mediante trituración y se transporta a una planta de conversión, donde el uranio se transforma en el gas hexafluoruro de uranio (UF6). En una planta de enriquecimiento isotópico por difusión, el gas se hace pasar a presión por una barrera porosa. Las moléculas que contienen uranio 235, más ligeras, atraviesan la barrera con más facilidad que las que contienen uranio 238. Este proceso enriquece el uranio hasta alcanzar un 3% de uranio 235. Los residuos, o uranio agotado, contienen aproximadamente el 0,3% de uranio 235. El producto enriquecido se lleva a una planta de fabricación de combustible, donde el gas UF6 se convierte en óxido de uranio en polvo y posteriormente en bloques de cerámica que se cargan en barras de combustible resistentes a la corrosión. Estas barras se agrupan en elementos de combustible y se transportan a la central nuclear.

Un reactor de agua a presión típico de 1.000 megavatios tiene unos 200 elementos de combustible, de los que una tercera parte se sustituye cada año debido al agotamiento del uranio 235 y a la acumulación de productos de fisión que absorben neutrones. Al final de su vida, el combustible es enormemente radiactivo debido a los productos de fisión que contiene, por lo que sigue desprendiendo una cantidad de energía considerable. El combustible extraído se coloca en piscinas de almacenamiento llenas de agua situadas en las instalaciones de la central, donde permanece un año o más.

Al final del periodo de enfriamiento, los elementos de combustible agotados se envían en contenedores blindados a una instalación de almacenamiento permanente o a una planta de reprocesamiento químico, donde se recuperan el uranio no empleado y el plutonio 239 producido en el reactor, y se concentran los residuos radiactivos.

El combustible agotado todavía contiene casi todo el uranio 238 original, aproximadamente un tercio del uranio 235 y parte del plutonio 239 producido en el reactor. Cuando el combustible agotado se almacena de forma permanente, se desperdicia todo este contenido potencial de energía. Cuando el combustible se reprocesa, el uranio se recicla en la planta de difusión, y el plutonio 239 recuperado puede sustituir parcialmente al uranio 235 en los nuevos elementos de combustible.

En el ciclo de combustible del RARML, el plutonio generado en el reactor siempre se recicla para emplearlo como nuevo combustible. Los materiales utilizados en la planta de fabricación de elementos de combustible son uranio 238 reciclado, uranio agotado procedente de la planta de separación isotópica y parte del plutonio 239 recuperado. No es necesario extraer uranio adicional en las minas, puesto que las existencias actuales de las plantas de separación podrían suministrar durante siglos a los reactores autorregenerativos. Como estos reactores producen más plutonio 239 del que necesitan para renovar su propio combustible, aproximadamente el 20% del plutonio recuperado se almacena para su uso posterior en el arranque de nuevos reactores autorregenerativos.

El paso final en cualquiera de los ciclos de combustible es el almacenamiento a largo plazo de los residuos altamente radiactivos, que continúan presentando peligro para los seres vivos durante miles de años. Varias tecnologías parecen satisfactorias para el almacenamiento seguro de los residuos, pero no se han construido instalaciones a gran escala para demostrar el proceso. Los elementos de combustible pueden almacenarse en depósitos blindados y vigilados hasta que se tome una decisión definitiva sobre su destino, o pueden ser transformados en compuestos muy estables, fijados en material cerámico o vidrio, o encapsulados en bidones de acero inoxidable y enterrados a gran profundidad en formaciones geológicas muy estables.

 

 

Seguridad nuclear

La preocupación de la opinión pública en torno a la aceptabilidad de la energía nuclear procedente de la fisión se debe a dos características básicas del sistema. La primera es el elevado nivel de radiactividad que existe en diferentes fases del ciclo nuclear, incluida la eliminación de residuos. La segunda es el hecho de que los combustibles nucleares uranio 235 y plutonio 239 son los materiales con que se fabrican las armas nucleares.

En la década de 1950 se pensó que la energía nuclear podía ofrecer un futuro de energía barata y abundante. La industria energética confiaba en que la energía nuclear sustituyera a los combustibles fósiles, cada vez más escasos, y disminuyera el coste de la electricidad. Los grupos preocupados por la conservación de los recursos naturales preveían una reducción de la contaminación atmosférica y de la minería a cielo abierto. La opinión pública era en general favorable a esta nueva fuente de energía, y esperaba que el uso de la energía nuclear pasara del terreno militar al civil. Sin embargo, después de esta euforia inicial, crecieron las reservas en torno a la energía nuclear a medida que se estudiaban más profundamente las cuestiones de seguridad nuclear y proliferación de armamento. En todos los países del mundo existen grupos opuestos a la energía nuclear, y las normas estatales se han hecho complejas y estrictas. Suecia, por ejemplo, pretende limitar su programa a unos 10 reactores. Austria ha cancelado su programa. En cambio, Gran Bretaña, Francia, Alemania y Japón siguen avanzando en este terreno.

Riesgos radiológicos

Los materiales radiactivos emiten radiación ionizante penetrante que puede dañar los tejidos vivos. La unidad que suele emplearse para medir la dosis de radiación equivalente en los seres humanos es el milisievert. La dosis de radiación equivalente mide la cantidad de radiación absorbida por el organismo, corregida según la naturaleza de la radiación puesto que los diferentes tipos de radiación son más o menos nocivos. En el Reino Unido, cada individuo está expuesto a unos 2,5 milisieverts anuales por la radiación de fondo procedente de fuentes naturales. Los trabajadores de la industria nuclear están expuestos a unos 4,5 milisieverts (aproximadamente igual que las tripulaciones aéreas, sometidas a una exposición adicional a los rayos cósmicos). La exposición de un individuo a 5 sieverts suele causar la muerte. Una gran población expuesta a bajos niveles de radiación experimenta aproximadamente un caso de cáncer adicional por cada 10 sieverts de dosis equivalente total. Por ejemplo, si una población de 10.000 personas está expuesta a una dosis de 10 milisieverts por individuo, la dosis total será de 100 sieverts, por lo que habrá 10 casos de cáncer debidos a la radiación (además de los cánceres producidos por otras causas).

En la mayoría de las fases del ciclo de combustible nuclear pueden existir riesgos radiológicos. El gas radón, radiactivo, es un contaminante frecuente en las minas subterráneas de uranio. Las operaciones de extracción y trituración del mineral producen grandes cantidades de material que contiene bajas concentraciones de uranio. Estos residuos tienen que ser conservados en fosas impermeables y cubiertos por una capa de tierra de gran espesor para evitar su liberación indiscriminada en la biosfera.

Las plantas de enriquecimiento de uranio y de fabricación de combustible contienen grandes cantidades de hexafluoruro de uranio (UF6), un gas corrosivo. Sin embargo, el riesgo radiológico es menor, y las precauciones habituales que se toman con las sustancias químicas peligrosas bastan para garantizar la seguridad.

Sistemas de seguridad de los reactores

Se ha dedicado una enorme atención a la seguridad de los reactores. En un reactor en funcionamiento, la mayor fuente de radiactividad, con diferencia, son los elementos del combustible. Una serie de barreras impide que los productos de fisión pasen a la biosfera durante el funcionamiento normal. El combustible está en el interior de tubos resistentes a la corrosión. Las gruesas paredes de acero del sistema de refrigeración primario del RAP forman una segunda barrera. El propio agua de refrigeración absorbe parte de los isótopos biológicamente importantes, como el yodo. El edificio de acero y hormigón supone una tercera barrera.

Durante el funcionamiento de una central nuclear, es inevitable que se liberen algunos materiales radiactivos. La exposición total de las personas que viven en sus proximidades suele representar un porcentaje muy bajo de la radiación natural de fondo. Sin embargo, las principales preocupaciones se centran en la liberación de productos radiactivos causada por accidentes en los que se daña el combustible y fallan los dispositivos de seguridad. El principal peligro para la integridad del combustible es un accidente de pérdida de refrigerante, en el que el combustible resulta dañado o incluso se funde. Los productos de fisión pasan al refrigerante, y si se rompe el sistema de refrigeración, los productos de fisión penetran en el edificio del reactor.

Los sistemas de los reactores emplean una compleja instrumentación para vigilar constantemente su situación y controlar los sistemas de seguridad empleados para desconectar el reactor en circunstancias anómalas. El diseño de los RAP incluye sistemas de seguridad de refuerzo que inyectan boro en el refrigerante para absorber neutrones y detener la reacción en cadena, con lo que la desconexión está aún más garantizada. En los reactores de agua ligera, el refrigerante está sometido a una presión elevada. En caso de que se produjera una rotura importante en una tubería, gran parte del refrigerante se convertiría en vapor, y el núcleo dejaría de estar refrigerado. Para evitar una pérdida total de refrigeración del núcleo, los reactores están dotados con sistemas de emergencia para refrigeración del núcleo, que empiezan a funcionar automáticamente en cuanto se pierde presión en el circuito primario de refrigeración. En caso de que se produzca una fuga de vapor al edificio de contención desde una tubería rota del circuito primario de refrigeración, se ponen en marcha refrigeradores por aspersión para condensar el vapor y evitar un peligroso aumento de la presión en el edificio.

 

 

 

 

 

Reprocesamiento del combustible

La fase de reprocesamiento del combustible plantea diversos riesgos radiológicos. Uno de ellos es la emisión accidental de productos de fisión en caso de que se produzca una fuga en las instalaciones químicas y los edificios que las albergan. Otro podría ser la emisión rutinaria de niveles bajos de gases radiactivos inertes como el xenón o el criptón. Una instalación británica llamada THORP (acrónimo inglés de Planta Térmica de Reprocesamiento de Óxido) ha empezado a funcionar en Sellafield, en la región de Cumbria. Esta planta reprocesará combustible agotado de centrales británicas y extranjeras. En Francia también se lleva a cabo este proceso, y Japón está desarrollando sus propias plantas de reprocesamiento.

Una gran preocupación en relación con el reprocesamiento químico es la separación de plutonio 239, un material utilizado en la fabricación de armas nucleares. En Estados Unidos por ejemplo, no se reprocesa en la actualidad ningún combustible por temor al uso ilegal de este producto. El empleo de medios no tanto técnicos como políticos parece ser la mejor forma de controlar los peligros de su desviación subrepticia —o su producción secreta— para fabricar armas. La mejora de las medidas de seguridad en los puntos sensibles del ciclo del combustible y el aumento de la inspección internacional por parte de la Agencia Internacional de la Energía Atómica (AIEA) parecen las medidas más apropiadas para controlar los peligros de la desviación de plutonio.

Almacenamiento de residuos

El último paso del ciclo del combustible nuclear, el almacenamiento de residuos, sigue siendo uno de los más polémicos. La cuestión principal no es tanto el peligro actual como el peligro para las generaciones futuras. Muchos residuos nucleares mantienen su radiactividad durante miles de años, más allá de la duración de cualquier institución humana. La tecnología para almacenar los residuos de forma que no planteen ningún riesgo inmediato es relativamente simple. La dificultad estriba por una parte en tener una confianza suficiente en que las generaciones futuras estén bien protegidas y por otra en la decisión política sobre la forma y el lugar para almacenar estos residuos. La mejor solución parece estar en un almacenamiento permanente, pero con posibilidad de recuperación, en formaciones geológicas a gran profundidad. En 1988, el gobierno de Estados Unidos eligió un lugar en el desierto de Nevada con una gruesa sección de rocas volcánicas porosas como el primer depósito subterráneo permanente de residuos nucleares del país. En el Reino Unido no se ha escogido ningún lugar, aunque las investigaciones geológicas se centran en Sellafield.

Esquema del almacenamiento de residuos radiactivos a gran profundidad

 

ASPECTOS ECONÓMICOS DE LA GENERACIÓN DE ELECTRICIDAD

¿Qué se entiende por coste de la energía eléctrica?

Coste de un producto es la suma de los diferentes gastos en los que se incurre para fabricarlo y que se repercuten sobre el mismo. En el caso de las centrales eléctricas el producto es la energía eléctrica entregada a la red, que se expresa normalmente en kilovatios hora. Para producir ésta energía eléctrica es necesario disponer, fundamentalmente, de una central generadora, de un combustible y de un personal. Por tanto, el coste de la energía eléctrica es la repercusión a cada kWh de la parte de la central que se amortizan en el proceso, del combustible consumido y de los gastos de operación y mantenimiento necesarios. En este análisis no se suelen incluir los costes de transporte y distribución de la electricidad, las pérdidas de energía en la red y los impuestos, puesto que se considera el coste del kWh en el momento de salida de la central.

¿Cómo se calcula el coste de la energía eléctrica?

El coste real de la electricidad producida en una central en explotación, durante un período de tiempo determinado, se calcula a partir del valor de amortización de la inversión de la central, del coste del combustible consumido, y de los gastos de operación y mantenimiento, tal y como se realiza en cualquier planificación económica. Con el fin de disponer de elementos de juicio a la hora de realizar una planificación energética nacional, que permita, entre otros objetivos, alcanzar un abastecimiento lo más racional posible, se evalúa, también, el coste medio de la producción de energía eléctrica en futuras centrales, relacionando los costes de producción a lo largo de toda la vida de la central. Para ello, es necesario definir el período de vida de la central, las horas anuales de utilización de la misma y el coste del dinero empleado en la financiación. Estos estudios de costes pueden realizarse de forma sistemática para optimizar la explotación de una futura red eléctrica bajo diferentes hipótesis.

¿Cómo se calcula la inversión de una central?

En la planificación de una nueva central, inicialmente es necesario establecer el denominado coste base de la central, que es lo que costaría ésta si se construyera y pagara instantáneamente. El coste base está constituido en primer lugar por los costes directos que son: los terrenos, obra civil, montaje y equipo; y en segundo lugar, por los indirectos o inmateriales: servicios de ingeniería, inspección y dotación para contingencias durante el período de ejecución del proyecto. Para realizar un análisis detallado, es necesario desglosar del coste base la parte que es de procedencia nacional y por tanto se paga en moneda del país donde se construye la central, y la parte del mismo que es necesario adquirir en el exterior y por lo tanto pagar en moneda extranjera con el consiguiente riesgo en las variaciones del cambio de moneda. Una central nuclear no se construye en un instante, sino que desde que se inician las primeras etapas del diseño hasta la explotación comercial transcurre un largo período de tiempo, lo que se realiza según un determinado calendario, el cual incluye los pagos con que se irá materializando anualmente la inversión correspondiente. Para calcular la inversión total actualizada al momento de puesta en explotación de la central será necesario sumar todos los pagos parciales, previo multiplicarlos por dos factores: el primero considera la inflación; el segundo representa los costes financieros que estará devengando cada inversión parcial desde el momento del pago hasta la puesta en operación de la central. De lo anterior se deduce que el coste total de Inversión es igual al coste base multiplicado por un cierto factor que crece cuanto mayor sea la tasa de costes financieros y cuanto mayor es el período de construcción de la central. El coste de la inversión total dividido por la potencia nominal de la central, MWe, representa el coste de la potencia unitaria instalada. Este parámetro es de una gran importancia porque el coste de la potencia unitaria instalada no es constante para cada tipo de central, sino que depende de la potencia de la central; cuanto mayor es la potencia de ésta, menor es el coste unitario. Las curvas tienen una tendencia semejante para todas las centrales, pero con pendientes distintas según los tipos.

 

¿Cómo se repercute la inversión sobre el coste de la energía eléctrica?

La inversión realizada en una central se amortiza a lo largo de su vida operativo. Además es necesario crear un fondo para financiar el desmantelamiento de la central cuando haya terminado su vida, el cual se estima como un porcentaje fijo de la inversión. La amortización anual se calcula a partir del número de años de funcionamiento de la central y de la tasa de capitalización del dinero, suponiendo que esta amortización es uniforme a lo largo del tiempo. En el cálculo se supone que el número de horas de funcionamiento anual de la central es también constante a lo largo de su vida. Con ello resulta que la repercusión de los costes de inversión sobre el coste del kilovatio hora es directamente proporcional al coste de la potencia unitaria instalada e inversamente proporcional al número de horas de funcionamiento anual de la central. Esto significa que las centrales nucleares, con un valor muy alto de la inversión, requieren un factor de utilización grande para ser rentables, lo que significa que estas centrales deben funcionar en base, mientras que las puntas han de cubrirse con centrales en que los costes de capital sean menores. Hay que destacar que el valor del número de años de vida de la central se estima con un período fijo, sin que esté afectado por las horas reales de utilización de la central. A partir de la experiencia adquirida en la explotación de centrales nucleares se ha comprobado que el período de 30 años aceptado hasta ahora como duración de las mismas es demasiado corto, por lo que está en estudio el establecer un valor mucho mayor, que estaría de mayor acuerdo con sus posibilidades reales. Si estos estudios llegan a un resultado positivo, ello significaría que podrá lograrse un valor mucho menor para la repercusión de los costes de capital sobre el precio de la electricidad, puesto que la amortización se llevaría a cabo en un período mucho más largo.

 

¿Cómo se calcula el coste del combustible?

La repercusión del combustible sobre el kilovatio hora generado, se obtienen de dividir el coste total del combustible consumido por la central durante un año de operación (coste de las materias primas energéticas, coste de los procesos de transformación, de los fletes, seguros, etc.) por la energía generada por la central durante un año de funcionamiento. Para cada tipo de central el coste del combustible por kWh generado no varía apreciablemente en función del tamaño de la central. El coste del combustible en una central hidráulica es casi despreciable, bajo en las centrales nucleares, y muy alto en las térmicas de carbón, fuel y gas.

 

Aspectos Sociales

¿Existe relación entre bienestar y consumo de energía?

El consumo de energía por habitante constituye uno de los indicadores más fiables del grado de desarrollo económico de una sociedad, algo que está íntimamente vinculado con el bienestar material. En este sentido, la demanda energética se asocia de forma generalizada con el producto nacional bruto de un país, con su capacidad industrial y con el nivel de vida alcanzado por sus habitantes. Aunque desde ciertas perspectivas ecologistas se quiere negar la evidencia, es claro que existe una alta correlación entre consumo energético y toda una serie de magnitudes económicas, verificable tanto en el plano sincrónico como en el histórico. Desde la primera óptica se puede comprobar como un elevado porcentaje de la energía utilizada en el mundo es absorbida por los países desarrollados.

La correspondencia entre el nivel de vida y consumo energético se puede apreciar, asimismo, desde la perspectiva histórica, pues se pueden examinar las evidentes relaciones entre crecimiento económico e incremento de la demanda de energía. La explicación puede hacerse a través de los cambios estructurales que se suceden a lo largo de la historia económica de un país y, simultáneamente, considerando que dentro de las distintas actividades económicas existen enormes diferencias de consumo energético para obtener una unidad de producción. Cuando un país empieza a avanzar por la senda del desarrollo su estructura económica se caracteriza por un predominio de las actividades primarias, a las que se unen algunas artesanales, por tanto su consumo energético es bajo.

Iniciado el proceso de crecimiento, la industria aumenta en importancia, lo mismo que los transportes, sectores que, en general requieren gran cantidad de energía. A ello se une la creciente mecanización de todas las actividades económicas y el aumento del uso de energía en las economías domésticas, redundando todo en fuertes incrementos en el empleo de energía. No obstante, la mayor eficiencia técnica de las máquinas permite reducir progresivamente el uso de energía para iguales niveles de satisfacción material.

 

 

HOME INTRODUCCION INFORME VARIABLES CONCLUSION ANEXOS
HIDRAULICA PETROLEO SOLAR EOLICA GAS NUCLEAR